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Abstract. Current modeling practices for environmental and sociological modulated infectious diseases remain inad-
equate to forecast the risk of outbreak(s) in human populations, partly due to a lack of integration of disciplinary knowl-
edge, limited availability of disease surveillance datasets, and overreliance on compartmental epidemiological modeling
methods. Harvesting data knowledge from virus transmission (aerosols) and detection (wastewater) of SARS-CoV-2, a
heuristic score-based environmental predictive intelligence system was developed that calculates the risk of COVID-19
in the human population. Seasonal validation of the algorithm was uniquely associated with wastewater surveillance of
the virus, providing a lead time of 7–14days before a county-level outbreak. Using county-scale disease prevalence data
from the United States, the algorithm could predict COVID-19 risk with an overall accuracy ranging between 81% and
98%. Similarly, using wastewater surveillance data from Illinois and Maryland, the SARS-CoV-2 detection rate was
greater than 80% for 75% of the locations during the same time the risk was predicted to be high. Results suggest the
importance of a holistic approach across disciplinary boundaries that can potentially allow anticipatory decision-making
policies of saving lives and maximizing the use of available capacity and resources.

INTRODUCTION

Published reports indicate that aerosols are now consid-
ered a critical route of transmission for respiratory viruses.1–5

Viable SARS-CoV-2 particles have been collected from the
air at a distance of up to 4m from infected patients.3 Several
studies suggest SARS-CoV-2 becomes airborne in the built
infrastructure or outdoors given favorable ambient environmen-
tal conditions.3,6,7 Large droplets containing SARS-CoV-2 tend
to settle on the ground within 1–2m,8 whereas smaller droplet
nuclei remain airborne (including viruses attached to solid or
liquid particulates), constituting a major transmission route for
humans under prevailing ambient weather and climatic condi-
tions. Although an infectious dose can vary and be influenced
by a range of host characteristics (age, sex, comorbidities,
smoking, etc.), as well as genetic mutation of the virus itself,
respiratory viruses infect human hosts, proliferate, and spread
from the hosts via air. Clinical diagnosis of coronavirus dis-
ease (COVID-19) infection is by detecting SARS-CoV-2 RNA
in nasopharyngeal swabs. However, SARS-CoV-2 RNA is
also present in feces of infected individuals.9,10 Moreover,
SARS-CoV-2 RNA is detectable in fecal samples several
days before development of symptoms in humans. Viral
shedding in feces has been reported to persist in clinical
samples that tested negative.10 Hence, wastewater surveil-
lance (WS, also referenced as wastewater monitoring or
wastewater-based epidemiology) of wastewater treatment
systems is now practiced as a complementary tool to clinical
testing.11–13 A few studies employing wastewater sampling
have reported community transmission of SARS-CoV-2 before
onset of COVID-19 cases.11,14,15 That is, SARS-CoV-2

variants in a community have been shown to be present in
wastewater before clinical cases were reported,13,16 suggest-
ing longitudinal wastewater analysis can be used to detect viral
shedding by infected (symptomatic and asymptomatic) indivi-
duals, hence has potential to identify outbreaks earlier than clini-
cal case reports.
It was reported that SARS-CoV-2 can aerosolize in cold,

dry environments, notably at low dew point temperatures
when the difference between ambient air and dew point tem-
peratures is high.17 When ambient air temperatures are
either greater than 24 or less than 17�C, transmission of
SARS-CoV-2 increases in the human population and is
associated with changes in human behavior and modes of
interaction in the built environment. However, within an
ambient air temperature range of 17–24�C, transmission les-
sens, reducing the number of human infections. In summary,
the number of reported cases within a population will depend
on the local weather and climatic variables, all of which pro-
vide background for the rate of newly reported cases.
After the COVID-19 pandemic began, several mathemati-

cal modeling strategies were offered, mainly to understand
transmission of COVID-19 in human populations. Typical
among these were simulation of COVID-19 infections on col-
lege campuses,18,19 assessment of potential mortality in the
United States,20 and compartmental epidemiological models
with various modes of population heterogeneity21,22 and
fluid dynamics-based methodologies for respiratory droplets
and aerosols.23 Although each modeling strategy has utility,
prediction of COVID-19 risk for human populations is limited.
Most of the COVID-19 models are variants of compartmental
epidemiological models (Susceptible–Infected–Recovered archi-
tecture) and therefore lack predictive intelligence because they
require 1) initial values to initiate model simulation and 2) hypo-
thetical excitation values of reproductive numbers, which are
a function and thus require incidence or prevalence time
series of COVID-19. These models and other regressive
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techniques (machine learning,24,25 regression models26,27)
lack parsimony and generalization ability, implying the simu-
lations remain native to geographical locations.
SARS-CoV-2 provides a unique opportunity because it is

known that 1) the virus can be detected in wastewater sev-
eral days before an outbreak occurs in a community28,29 and
2) a respiratory route of infection occurs via virus-laden
aerosolized particles.30,31 The criticality of the relationship
between transmission (air) and detection (wastewater) is key
to developing predictive intelligence32–34 (broadly defined as
collective knowledge harvested from multiple data sources
for a mathematical risk and decision-making assessment sys-
tem) for forecasting risk of COVID-19. The important
question—and the goal of this study—is whether reliable pre-
dictive intelligence can be developed using collective knowl-
edge from the air–water nexus to forecast seasonal threat of
COVID-19 in human populations. Emerging evidence indi-
cates COVID-19 will be seasonal17; however, seasonality is
viewed as a function of geographic space and time, implying
specific regions of the world will be impacted during a particu-
lar period of time more so than at other times of the year. This
poses a critical problem in determining when and where to
intervene strategically—that is, intervention will be more effec-
tive if detecting an outbreak of COVID-19 is reliable through
surveillance of wastewater for SARS-CoV-2 RNA.
It is important to distinguish categorically between predic-

tion and simulation modeling systems. Prediction is likely to
provide estimates for the true unknown (in the time domain),
while simulation systems are likely to be scenario generation
algorithms. Current epidemiological models greatly enhance
simulation capability but lack risk predictive capacity. A true
predictive modeling system will provide risk of COVID-19 in a
given space and time over a particular region, the objective of
this study. Hence, we developed a unique spatial and temporal
scale-dependent and socioenvironmental driven predictive
scoring system to answer these questions. The model was val-
idated using county scale data for the continental United
States and finer community-level scale using WS data. The
predictive system presented in this study encapsulates the cli-
mate, weather, and sociological attributes associated with the
virus and captures the inherent stochastic behavior of viral
transmission, allowing replication of outputs in different regions
and providing parsimonious versatility.

MATERIALS AND METHODS

On the basis of our previous hypothesis,17 five variables
were used to develop the predictive system: ambient air
temperature, dew point temperature, population density,
ethnicity, and household income. Environmental variables
(dew point temperature and ambient air temperature) were
obtained on a daily scale from Oregon State University’s
Parameter-Elevation Regressions on Independent Slopes
Model (PRISM) climate group products at a resolution of
4 km 3 4 km (PRISM Climate Group, Oregon State Univer-
sity, http://prism.oregonstate.edu). Socioeconomic (https://
www.census.gov/data/datasets/time-series/demo/popest/
2010s-counties-total.html#par_textimage_70769902), ethnic-
ity, and household income data sets were retrieved from the
U.S. Census Bureau. The population density data were
obtained from Oak Ridge National Laboratory’s LandScan
population data at 1 km3 1km resolution. The reported daily

number of COVID-19 cases at the county level in the United
States were downloaded from an open-source upstream
repository (https://github.com/datasets/covid-19) maintained
by Johns Hopkins University Center for Systems Science and
Engineering (CSSE). On a finer scale, the daily COVID-19
cases were provided by the Champaign-Urbana Public Health
District and the Maryland Department of Health for Illinois and
Maryland, respectively.
The core of the methodology for the algorithm was devel-

oped using a heuristic score-based mathematical set of
rules by modifying our previously developed cholera fore-
casting system.35,36 The algorithm is based on weighted ras-
ter architecture where appropriate weights are provided to
each variable of interest and a composite mean is computed
that translates to a risk score.
Identification of environmental variables. Various envi-

ronmental variables have been identified to impact the trans-
mission of COVID-19 significantly. It was triggered in a cold
region during the winter months and advanced into other
colder regions during winter and spring. Once the summer
started, disease transmission moved towards the warmer/
hot regions, decreasing the number of reported cases in the
colder regions. This decline in cases coincided with the
comfortable ambient air temperature range of 17–24�C in
the colder regions. We identified a decrease in cases if a
region experiences ambient air temperature between 17 and
24�C; therefore, regions on either side of this range experi-
ence more cases. These variabilities in the reported cases,
according to the temperatures, are indicative of human
behavior beyond the comfortable temperature range. We
further determined that a region that experienced a combi-
nation of negative dew point temperature and an excess of
5�C difference between ambient air temperature and dew
point temperature has reported more infected cases than
other colder regions during winter and spring. The positive
association of cold and dry weather with the number of
infected cases suggests rapid aerosolization of SARS-CoV-2.
Along with environmental variables, various socioeconomic

variables have been identified to significantly associate with
the transmission of the disease in society. The population
density was identified as the most crucial variable of infec-
tious illnesses in positively determining the infected cases in
a region that directly correlates disease transmission.37–39

However, because it is hard to estimate an average spatial
threshold of population density for an outbreak of a specific
infectious disease, we used ordinal logistic regression to
determine the association of population density over the
COVID-19 reported cases in the United States at a county
scale.40 Apart from population density, the other socioeco-
nomic factors that we identified as significant are income and
ethnicity.41–43 Historically, the spread of infectious diseases
has been associated with household income. Low-income
households have exhibited a strong positive association
with COVID-19 cases. For this study, we defined household
income less than $35,000 USD as a low income.44,45 The
Centers for Disease Control and Prevention (CDC) has identi-
fied ethnicity as an indicator of the community’s spread
of COVID-19 due to its strong association with healthcare
access and occupational exposure to the virus due to socio-
economic status. According to the CDC report, the African
American and Hispanic populations are at 2.6 and 2.8 times
higher risk of infection, respectively, compared with the White
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andNon-Hispanic populations.46 Similarly, the African American
and Hispanic populations are at 4.7 and 4.6 times higher risk of
getting hospitalized, respectively.
Incorporating ambient air temperature, dew point temperature,

population density, ethnicity, and household income, we devel-
oped a model to predict the spatiotemporal COVID-19 risk.
Quantification of variables. We analyzed the previous

2weeks (in context to risk score prediction date) of ambient
air temperature for each pixel (1 km 3 1km) by categorizing
it based on the tolerable temperature (17–24�C).17 Any tem-
perature within the comfortable range was considered to
have the least impact on the transmission of the virus in the
human population. Deviation lower than 17�C or higher than
24�C was computed by the square root for homogeneity of
variance in the variable. The deviation from 17 to 24�C was
capped at 16�C, such that any value greater than 16�C
would be considered as 16�C. Therefore, the square root of
deviation varied between 0 and 4 as real numbers. The dif-
ference between ambient air temperature and dew point
temperature was used to quantify the cold and dry condi-
tions for the air. Here, cold regions were defined as regions
that experience below freezing temperatures (for one or
more days) for 3 or more months. The difference between
ambient air temperature and dew point temperature was
determined on a daily scale for 2weeks before predicting
the risk score. Lastly, these daily differences were masked
with the negative dew point temperature, with negative dew
point temperature as 1 and positive as a value of 0. There-
fore, it represented cold and dry climatic conditions over the
region experiencing negative dew point temperature. Simi-
larly, it was classified on a scale of 0 (minimum) to 4 (maxi-
mum). Zero risk score (0) if dew point temperature was posi-
tive, low-risk score (1) if the variable was between 0 and 3.5,
medium risk score (2) if the variable was between 3.5 and 7,
high risk score (3) if the variable was between 7 and 11.5,
and very high-risk score (4) if it was greater than 11.5. The
next step was to determine the weight of these environmen-
tal parameters for the predictive model. Both environmental
parameters are summed up with weights varying between
0.5 and 0.9 for the first parameter and 0.1–0.5 for the second
parameter in the combination shown in Supplemental Figure
1. The environmental variable of the model with weights of
0.8 and 0.2 of the first and second parameters, respectively,
exhibited the best results in terms of the statistical mea-
sures. Thus, the environmental variable was determined by
summing up and normalizing both environmental parameters
in a ratio of 4:1. The environmental risk computed using
these variables for the first 3weeks of April 2020 is shown in
Supplemental Figure 1.
In this study, the population density was considered the

most crucial socioeconomical variable, logarithmically quanti-
fied on a scale of 0 (minimum) to 4 (maximum). The second
and third variables, ethnicity and household incomes, are taken
in ratios at a county level. We formulated the socioeconomical
variable with a heuristic approach and provided 0.8, 0.1, and
0.1 weights for population density, ethnicity, and income. All
three variables were on a scale of 0–1, so the final socioecono-
mical variable follows the same scale. The socioeconomical
risk of COVID-19 is shown in Supplemental Figure 2.
The overall disease transmission risk was calculated as

the product of environmental and socioeconomical risks.
Therefore, only social factors play a role in determining the

risk within the comfortable temperature range, but climatic
variables influence the transmission rate beyond that range.
Wastewater surveillance.
Site description and sample collection. Wastewater sur-

veillance was carried out by monitoring components of
sewer collection systems in Illinois and Maryland (locations
are provided in Supplemental Figure 2). The total daily num-
ber of reported COVID-19 cases in Illinois and Maryland resi-
dences within the zip codes where the study was conducted
were retrieved from the Champaign–Urbana Public Health
District and the Maryland Department of Health, respec-
tively. Composite samples were collected weekly from man-
holes downstream of the sewer collection system in Illinois
and Maryland between September and December 2021,
using an automated composite sampling unit (Teledyne
ISCO, Lincoln, NE) with ice surrounding the collection jar.
During each sampling event in Illinois, samples (�60mL)
were collected at 4-hour intervals over 4days, totaling 24
individual sampling attempts and a composite sample volume
of 1–2L. Similarly, during each sampling event in Maryland,
samples (60mL) were collected at 15-minute intervals for
24hours, totaling 96 individual sampling attempts and a com-
posite sample volume of 5.76L.
Illinois sample processing. Illinois samples were pro-

cessed according to methods described previously.47 The
sewage sludge was concentrated by centrifugation for pre-
treatment. Briefly, 20mL of 2.5M MgCl2 was added to each
sewage sample for flocculation at the sampling site. After
arriving at the laboratory, the sewage samples were stored
at 4�C pending pretreatment. All samples were pretreated
within 24hours after the samples’ arrival. The actual total
volumes of the sewage samples ranged between 80 and
2,935mL. However, most of the sample volumes were
between 1,000 and 2,000mL. Before centrifugation, the
supernatant of the sewage sample was removed. Approxi-
mately 300mL of the liquid with sludge was retained in the
sample bag. The removed supernatant was temporarily
stored in 1,000mL clean glass bottles with graduation lines
to calculate the actual total volume of the sewage sample
and measure the sample pH. Sample pH was measured
using Hydrion 6.0–8.0 pH paper (Micro Essential Laboratory,
Brooklyn, NY). The remaining liquid with sludge in the sam-
pling bag was then transferred to 50-mL sterilized polypro-
pylene centrifuge tubes, 35mL each for centrifugation. Next,
350mL of water-dissolved Bovilis Coronavirus Vaccine (Merck
Animal Health, Rahway, NJ) was spiked in each centrifuge
tube to calculate the recovery rate of SARS-CoV-2 RNA. The
samples were centrifuged at 15�C at a speed of 10,000 3 g
for 30min. After centrifugation, the supernatant was dis-
carded. Approximately 0.1mL of the pellet was taken for RNA
extraction. If any liquid remained in the sample bag after split-
ting the liquid for centrifugation, the remaining liquid would be
stored in 50-mL centrifuge tubes to calculate the actual total
sample volume and do other analyses. Three parts of the liquid
volumes were combined to determine the total sample volume
calculation, including the supernatant temporarily stored in
1,000-mL glass bottles, the liquid with sludge for centrifuga-
tion, and the remaining liquid in the sample bag.
Viral RNA was extracted from the 0.1-mL pellet using

QIAmp Viral RNA Mini Kit (Qiagen, D€usseldorf, Germany) fol-
lowing the manufacturer’s protocol. The number of viral gen-
omes was quantified by Taqman-based reverse transcriptase
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qualitative polymerase chain reaction (RT-qPCR). The Taqman-
based RT-qPCR was initiated by mixing 5mL of viral genome
with 5mL of Taqman Fast Virus 1-step Master Mix (4444432,
Applied Biosystems, Waltham, MA), 1.5mL of primers/probe
mixture for N1 gene (2019-nCoV RUO kit, Integrated DNA
Technologies, Coralville, IA), and 8.5mL of water. The 20mL of
RT-qPCR cocktail was placed in the 96-well plates (4306737,
Applied Biosystems), and the RT-qPCR was run using a qPCR
system (Quant Studio 3, Thermo Fisher Scientific, Waltham,
MA) with the following thermal cycle: 5minutes at 50�C,
20seconds at 95�C, followed by 45 cycles of 3 seconds at
95�C and 30seconds at 55�C. Standard curves were obtained
for every RT-qPCR analysis with 10-fold serial dilutions of
synthetic RNA controls (102024, TWIST Bioscience, San
Francisco, CA), and PCR efficiencies were higher than 85%
(R2 . 0.99). The information for RT-qPCR primers is shown in
Supplemental Figure 3.
Maryland sample processing. Maryland samples were

processed according to methods described previously.13

Briefly, samples were homogenized manually, and an aliquot
(110mL) was pasteurized in a water bath at 60�C for
30minutes, transported to the laboratory on ice, and pro-
cessed the same day. To remove larger debris, 45mL was
transferred to a sterile polypropylene 50-mL conical tube
and centrifuged at 7,500 RCF for 10minutes at 4�C. The
resulting supernatant was transferred to a clean conical
tube and concentrated using InnovaPrep Concentrating
Pipette Select with Ultrafiltration PS Hollow Fiber pipette tips
(InnovaPrep, Drexel, MO), following manufacturer’s recom-
mendations (“Wastewater Application Note, Revision B”).
InnovaPrep Wet Foam Elution was stored in DNA/RNA shield
(Zymo Research, Irvine, CA), following manufacturer’s specifi-
cations, at –80�C until nucleic acid was prepared (, 48hours).
RNA purification. To serve as an internal control (IC) for

the RT-qPCR assay, 25mL of MS2 Bacteriophage, target
titer of 1.0’ 103 pfu/mL (ZeptoMetrix, Buffalo, NY), was
added to 115mL InnovaPrep Wet Foam Elution. Total RNA
was prepared from wastewater concentrates containing
MS2 Bacteriophage, employing the QIAamp Viral RNA Mini
Kit (Qiagen, Germantown, MD), following the manufacturer’s
instructions for use on the automated QIAcube Connect
platform. RNA extracts were stored in LoBind microcentri-
fuge tubes (Eppendorf, Hamburg, Germany) at –80�C before
RT-qPCR amplification (, 48hours).
Reference RNA materials. The SARS-CoV-2 Research

Grate Test Material (RGTM 10169; National Institute of
Standards and Technology, Gaithersburg, MD), consisting
of two synthetic RNA fragments from the SARS-CoV-2
genome (including SARS-CoV-2 sequences 25949–29698
and 12409–15962 of isolate USA-WA1/2020) in a back-
ground of 5 ng/mL human Jurkat RNA, was diluted over six
serial log dilutions with nuclease-free water for use as cali-
bration standards. RNA template of SARS-CoV-2 Nucleo-
capsid Phosphoprotein (N protein) encapsulated in the MS2
bacteriophage construct (PerkinElmer, Waltham, MA) was
prepared following manufacturer’s instructions for use as a
positive control (PC). Single-use aliquots of reference RNA
were stored in LoBind microcentrifuge tubes (Eppendorf,
Hamburg, Germany) at –80�C.
RT-qPCR amplification. The New Coronavirus Nucleic

Acid Detection Kit v.7.0 (PerkinElmer, Waltham, MA) was
used on the QuantStudioTM 3 System (Thermo Fisher,

Waltham, MA), for multiplexed detection of SARS-CoV-2N
protein and IC, following manufacturer’s specifications. Fol-
lowing each run, log fluorescence thresholds were set manu-
ally, and melt curve analysis was done to identify spurious
amplicons that could confound data interpretation (no spur-
ious amplicons detected). Quantification cycle (Cq) values
were exported to Excel (Microsoft, Redmond, WA) for fur-
ther analysis.
Quality control. Method extraction controls (PC, NC, IC)

were prepared using the New Coronavirus Nucleic Acid
Detection Kit (PerkinElmer) to monitor sample processing.
Synthetic SARS-CoV-2N protein RNA template encapsu-
lated in MS2 bacteriophage (PerkinElmer) was included as
PC. For IC, bacteriophage MS2 was used to monitor the pro-
cess from nucleic acid extraction to fluorescence detection
for amplification inhibition. Failure to detect PC resulted
in an invalid run for all samples. Samples negative for IC,
suggestive of amplification inhibition, or positive for NC, sug-
gestive of potential contamination, were discarded from
further analysis.

STATISTICAL ANALYSES

COVID-19 is a relatively new disease, and therefore a reli-
able long-term time series is not available where traditional
statistical measures,48 such as coefficient of determination,
root mean square, bias, or Nash–Sutcliffe Efficiency can be
computed. Hence, we used accuracy, sensitivity, specificity,
and precision to validate the model.48 These statistical mea-
sures are defined as

Accuracy5 ðtp 1 tnÞ=ðtp 1 tn 1 fp 1 fnÞ [1]

Sensitivity5 tp=ðtp 1 fnÞ [2]

Specificity5 tn=ðtn 1 fpÞ [3]

Precision5 tp=ðtp 1 fpÞ; [4]

where tp 5 true positive, representing number of locations
where the threshold of the reported cases is achieved when
the computed risk is higher than the stated risk; tn 5 true
negative, representing number of locations where the threshold
of reported cases is not achieved when the computed risk is
lower than the stated risk; fp 5 false positive, which repre-
sents number of locations where the threshold of reported
cases is not achieved when the computed risk is higher than
the stated risk; fn 5 false negative, which represents the
number of locations where the threshold of the cases is
achieved when the computed risk is lower than the specifi-
cally stated risk.
To compute these statistical metrics, we evaluated com-

puted risk scores and corresponding reported cases at the
county scale by varying risk score values from 0.2 to 1.0 at
an incremental step of 0.01. The motivation for this approach
was to determine an optimum predicted risk score to serve
as threshold. At each step, the varying value was compared
with the computed risk score of a county, after which that
county was categorized. Once each county was categorized
at a specific value, the statistical measures were determined.
The same approach was used for the next incremented
value. Statistical measures for each value provided the base
to evaluate model performance at varying risk values to
determine the risk score threshold.
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Detection of SARS-CoV-2 RNA in wastewater is shown as
qualitative (presence/absence) data and is intended for
model evaluation and not a direct comparison between sites.
Site description, data collection, and processing steps are
available in detail in supplementary section A. The prediction
system was developed and subsequently validated for the
continental United States, and risk scores were computed at
a resolution of 1 km 3 1 km (Figure 1). The model was vali-
dated using different time periods: March 1 through 21
(Spring 2021), June 1 through 21 (Summer 2020 and 2021),
September 1 through 21 (Fall 2020 and 2021), and Decem-
ber 1 through 21 (Winter 2020), along with April 1 through 21
(2020). April 2020 represented conditions at the beginning of
the outbreak in the United States. The predictive system out-
put is a composite of static socioeconomic variables and
time-varying dynamic environmental variables (Supplemental
Section A). A known challenge of any disease risk prediction
algorithm is validation, due to discrepancies in availability of
spatial resolution of reported cases data and associated
model outputs. Therefore, we validated the risk scores with
the corresponding reported cases at the average county scale
and pixel scale at two spatial resolutions. Choice of the pixel
scale risk score is critical for designing intervention strategies
by accurately identifying the location. The risk scores must be
computed at the same spatial scale as disease-reported cases
data; thus, the risk score at a county scale was computed
using two methods. First, risk scores were computed with
pixel average at the county scale (Rp). Then the maximum risk
score within the county was determined and stated as maxi-
mum risk (Rm). Conceptual structure is provided in the flow-
chart shown in Supplemental Figure 3. A confusion matrix was
created for three thresholds of the number of reported cases
at the county scale: average (av), that is, average plus one
standard deviation (av1), and average plus two standard devia-
tions (av2) at an incremental step of 0.01 of risk scores.
Model performance was evaluated using statistical metrics,

derivative of the confusion matrix that further determines risk

score thresholds for this disease. Statistical parameters used
in this study were accuracy, precision, sensitivity, and specifi-
city. A combination of these four statistical parameters served
to evaluate model performance. Model performance, in terms
of these statistical measures for the three thresholds at an
incremental step of 0.01, is shown in Supplemental Table 4.
For example, for risk value of 0.20, all four statistical metrics
were determined and further calculated for all values between
0.2 and 1 at an increment of 0.01. Risk score threshold values
were determined for each disease threshold, employing the
optimum value of all statistical parameters and the optimum
value by average value of the four statistical parameters with-
out biasing individual parameters.

RESULTS

Outbreak of a new disease in a human population poses
an inherent predictive modeling challenge, namely, valida-
tion of a mathematical algorithm and its application, as well
as translation of the modeled risk to new regions where dis-
ease prevalence data are limited or unavailable, coupled
with emerging etiology of the disease. Our score-based
predictive intelligence system aimed to overcome the two
challenges, requiring unique interpretation while validating
computed scores. The scores (risk scores) ranged from 0 to
1 and were calibrated based on av, av1, and av2. Thus, identi-
fying a risk between 0 and 1 was critical in determining the
value above which a particular region would be expected to
have an above average number of COVID-19 cases. This
process is unique and overcomes translation of risk scores
for other regions, as shown in Supplemental Figure 3. There
are a few constraints on using county scale infection data:
1) it is not able to capture the distribution of reported cases
within the county, 2) it also poses a challenge for the valida-
tion of finer scale model, and 3) it also poses a challenge to
locate wastewater sampling sites. The risk scores are com-
puted at the county scale with pixel average (Rp) and

FIGURE 1. COVID-19 predicted risk map for April 1 to April 21 computed on March 31, 2020.

USMANI AND OTHERS522

/view/journals/tpmd/110/3/article-p518.xml?tab_body=supplementary-materials
/view/journals/tpmd/110/3/article-p518.xml?tab_body=supplementary-materials
/view/journals/tpmd/110/3/article-p518.xml?tab_body=supplementary-materials
/view/journals/tpmd/110/3/article-p518.xml?tab_body=supplementary-materials
/view/journals/tpmd/110/3/article-p518.xml?tab_body=supplementary-materials


maximum pixel value (Rm) to overcome these constraints.
The zip code scale data are used for wastewater sampling
validation, which is at a much finer scale than the county.
County scale calibration and validation. Calibration of

the model was first on county scales. Risk scores (Rp) for
the first 21days of April 2020 were calculated. Risk score
threshold (or calibrated) values for av (201), av1(1,558), and
av2(2,915) were 0.39, 0.50, and 0.55, with average statistical
metrics of 76%, 75%, and 74%, respectively, as shown in
Table 1. The model was used for six periods spanning all
seasons in the continental United States. During winter
(December), more cases were reported for the northern part
of the country, whereas during summer (June) the northern
region reported fewer cases. A different trend was observed
for the southern part of the country; a high number of cases

were reported in summer and winter (Figure 2). Spring
(March) findings were similar to winter, and fall (September)
was similar to summer with respect to spatially reported
cases. The transition from summer to winter showed a grad-
ual shift in reported cases from south to north, whereas the
transition from winter to summer showed a shift from north
to south. Optimum Rp values for each timespan are provided
in Table 1. For each season, the risk score threshold was
determined using statistical parameters for 2020 and for the
same evaluation of risk score threshold model performance
for 2021. Overall, model performance in terms of statistical
average was the same for 2021, with a slight increase or
decrease in performance by season. Spring months showed
a slight decrease in all three thresholds in 2021 compared
with 2020. Summer (June) and fall (September) yielded

TABLE 1
Optimum pixel average (Rp) risk for predictive risk, calculated at various seasonal time steps based on given statistical parameters

Season period Levels Cases Rp Accuracy Precision Sensitivity Specificity Average

April 2020 (Spring) av 201 0.39 92% 64% 52% 97% 76%
av1 1,558 0.5 97% 44% 59% 98% 75%
av2 2,915 0.55 98% 41% 57% 99% 74%

June 2020 (Summer) av 161 0.24 83% 46% 40% 91% 65%
av1 982 0.32 96% 36% 31% 98% 65%
av2 1,803 0.42 97% 26% 46% 98% 67%

September 3020 (Fall) av 276 0.22 82% 60% 42% 93% 69%
av1 1,204 0.28 94% 35% 34% 97% 65%
av2 2,132 0.35 98% 42% 33% 99% 68%

December 2020 (Winter) av 1,493 0.33 87% 63% 63% 92% 76%
av1 7,537 0.45 96% 50% 53% 98% 74%
av2 13,581 0.46 97% 22% 63% 97% 70%

Mar 2021 (Spring) av 412 0.39 87% 74% 34% 98% 73%
av1 1,779 0.5 95% 56% 31% 99% 70%
av2 3,146 0.55 97% 43% 28% 99% 67%

June 2021 (Summer) av 100 0.24 80% 46% 39% 89% 63%
av1 413 0.32 95% 45% 31% 98% 67%
av2 726 0.42 98% 62% 12% 100% 68%

September 2021 (Fall) av 1,015 0.22 81% 61% 46% 92% 70%
av1 3,462 0.28 94% 46% 44% 97% 70%
av2 5,908 0.35 97% 39% 25% 99% 65%

FIGURE 2. Reported cases at county scale between April 1 and April 21.
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similar results for 2021 compared with 2020. In summer, the
model performed better for av in 2020, whereas the other
two thresholds performed better in 2021 (Table 1).
During the first 21days of April 2020, a total of c. 603,020

COVID-19 cases were reported in the United States. New
York State was the most affected, with the top five counties
in the country having more than 20,000 daily reported cases.
During this period, the Northeastern part of the country
accounted for most of the reported cases, as shown in
Figure 2. For that same period, the model predicted a higher
risk score in the northeastern region than in the western and
central regions (Figure 1). The dynamic component of the
model (climate/weather) showed high risk score in north and
central parts of the United States. However, due to spatial
variability in the static component (socioeconomical), the
northeastern part of the country exhibited higher risk than
the western and central regions. Reported cases were at a
county scale (Figure 2), whereas the predicted risk score
was at a finer scale of 1 km3 1km, with the model risk score
translated to the following for validation.
Model validation on pixel scale (Rm). The potential pre-

dictive intelligence at a fine spatial resolution scale was
assessed by analyzing individual pixels for a particular
county with the highest risk score (Rm) for April 2020 for
each reported case threshold. Rm risk score threshold values
for av, av1, and av2 were 0.57, 0.62, and 0.7, with average
statistical values 49%, 55%, and 58%, respectively (Table 2).
The model was evaluated for the four seasons of 2020 and
2021, showing comparable results in terms of risk score
threshold and model performance, with a slight improvement
for June 2021, compared with 2020, in terms of average statis-
tical values (Table 2).
Overall performance of Rp was better than Rm in validating

the model at the county scale for reported disease data, as
expected due to similar spatial resolution of Rp and disease
data. However, Rm had high sensitivity, indicating ability to
capture the reported condition, namely number of cases
greater than average number of cases reported. Therefore,

Rm is concluded the better tool for surveillance at the neigh-
borhood (finer) level between the two categorized risk
scores.
Validation using wastewater sampling for SARS-CoV-2.

Wastewater sampling was conducted in Fall 2021, Septem-
ber to November. With calculated accuracy at the county
level, we assumed the forecasted risk score at 1-km resolu-
tion would be comparable. On the basis of these risk scores,
we identified neighborhoods with high risk within Cham-
paign, IL, and Baltimore, MD, counties. Four locations, each
within the Urbana region of Champaign and the Baltimore
region, were shortlisted for wastewater sampling for SARS-
CoV-2, based on the predictive risk maps. In Urbana, loca-
tion 1 is home to many off-campus, multiresident housing
and restaurants frequently visited by students, staff, and fac-
ulty. University of Illinois required students to test for COVID-19
every 2days. Location 2 comprises apartments and single-
family housing for residents who may not work for the university
but have access to free testing provided by the University of Illi-
nois. Location 3 is a single-house family neighborhood with
residents who may not work for the University of Illinois. Loca-
tion 4 is also a single-house family neighborhood but includes a
nearby school. In Baltimore, all four locations are in an urban
setting. Figures 3 and 4 show weekly forecasted risk for fall
months, wastewater monitoring results, and the human clinical
test data for all eight locations. Figures indicate COVID-19 risk
scores began to increase around October 18 in Urbana and
October 11 in Baltimore at all locations and, with some lag,
reported COVID-19 cases increased. The results show that
SARS-CoV-2 was detected in wastewater samples at all loca-
tions after the risk scores predicted a potential increase, with
the exception of 2weeks at location 2 in Urbana and some
locations in Baltimore.
We determined model effectiveness at neighborhood scale

for the predictive risk model using Pearson correlation, as
shown in Tables 3 and 4. Three categories of reported cases:
1week, where cases reported the following week were con-
sidered; 2weeks, where cases were reported within the next

TABLE 2
Optimum maximum pixel (Rm) risk for predictive risk, calculated at various seasonal time steps based on given statistical parameters

Season period Levels Cases Rm Accuracy Precision Sensitivity Specificity Average

April 2020 (Spring) av 201 0.57 62% 14% 55% 63% 49%
av1 1,558 0.62 80% 6% 51% 81% 55%
av2 2,915 0.7 87% 5% 50% 88% 58%

June 2020 (Summer) av 161 0.35 73% 30% 56% 76% 59%
av1 982 0.5 93% 21% 41% 95% 62%
av2 1,803 0.5 94% 11% 51% 94% 62%

September 2020 (Fall) av 276 0.31 73% 40% 67% 74% 64%
av1 1,204 0.49 95% 40% 28% 98% 65%
av2 2,132 0.54 98% 41% 32% 99% 67%

December 2020 (Winter) av 1,493 0.56 83% 53% 75% 85% 74%
av1 7,537 0.57 79% 15% 92% 78% 66%
av2 13,581 0.57 76% 5% 92% 76% 62%

March 2021 (Spring) av 412 0.57 76% 40% 69% 78% 66%
av1 1,779 0.62 81% 17% 70% 82% 62%
av2 3,146 0.7 88% 12% 58% 89% 62%

June 2021 (Summer) av 100 0.35 70% 34% 63% 72% 60%
av1 413 0.5 93% 31% 36% 96% 64%
av2 726 0.5 94% 17% 42% 95% 62%

September 2021 (Fall) av 1,015 0.31 65% 37% 81% 60% 61%
av1 3,462 0.49 93% 41% 31% 97% 66%
av2 5,908 0.54 97% 47% 17% 99% 65%
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FIGURE 3. Risk scores, reported cases, and SARS-CoV-2 detection for four locations in Urbana–Champaign, IL. The dotted line represents predicted
risk on that date calculated for the next 2–3weeks. Dash-dotted line represents cases reported over the next 2weeks (i.e., cases indicated on November
1 represents cases reported between November 1 and November 14). The bar plot represents detection of SARS-CoV-2 within the next 7days.

FIGURE 4. Risk scores, reported cases, and SARS-CoV-2 detection at four locations in Baltimore, MD. The dotted line represents risk, predicted
on that date, calculated for next 2–3weeks. Dash-dotted line represents the reported cases in the next 2weeks. For example, cases on November
1 represents cases reported between November 1 and November 14. The bar represents detection of SARS-CoV-2 over the next 7days.
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2weeks of calculated risk; and 3weeks, where cases reported
within the next 3weeks of calculated risk were considered.
Results showed significant association between predicted risk
score and reported number of cases (0.52–0.88) for Urbana,
as shown in Table 3. Location 1 exhibited the highest correla-
tion of 0.57 for 1week reported cases, and location 2 exhibited
highest correlation of 0.79 for cases over 3weeks. For locations
3 and 4, correlation varied between 0.57–0.88 and 0.65–0.77,
respectively, being highest for locations 3 and 4 at 1 and
3weeks, respectively. Correlation for all locations combined
varied between 0.52 and 0.56, the highest within 2weeks. In
Baltimore, locations B, C, and D exhibited highest correlation,
namely 0.81, 0.78, and 0.78, respectively, for 2-week cumula-
tive cases, and location A exhibited highest correlation of 0.72
for 3-week cumulative number of reported cases, as shown in
Table 4. Correlation was the highest for 2-week cumulative
data in the combined series.
In September, all locations exhibited lower COVID-19 risk

scores, with the lowest on October 4 in Urbana and October
11 in Baltimore. Location 1, in agreement with the fall risk
scores as shown in Table 2, SARS-CoV-2 RNA was detected
every week between October 29 and November 30 (Figure 3).
In agreement with the predicted risk, SARS-CoV2 RNA was
detected in wastewater samples collected between November
12 and 16, with virus RNA concentrations higher than the
detection limit but lower than the quantification limit. Similarly,
only one and two new cases were reported during November
20 and November 27weeks, respectively. The virus RNA was
not detected until November 12, as shown in Figure 3. In

Baltimore, at location C, SARS-CoV-2 RNA was detected in all
samples, in agreement with predicted risk score (Rm) of
greater than 0.31 for the fall of that year. The virus RNA was
detected in all Baltimore locations when the predicted risk
score was greater than 0.31, as shown in Figure 4. When
the predicted risk score was greater than 0.31, Urbana
SARS-CoV-2 detection was 100%, 50%, 75%, and 60% for
locations 1, 2, 3, and 4 and in Baltimore, detection success
was 83%, 67%, 100%, and 33% at locations A, B, C, and D,
respectively. In November, the risk score was higher, with a
large number of cases and successful virus RNA detection in
the wastewater. All locations showed an increase in the num-
ber of reported cases during the week of December 4.

DISCUSSION

Progression of COVID-19 is traditionally monitored by
counting the number of reported cases of individuals testing
positive for the presence of SARS-CoV-2, which is generally
prompted by presentation of symptoms. However, presymp-
tomatic and/or asymptomatic COVID-19 transmission has
been observed.49 Clinical testing programs have been useful
in professional settings, but selective testing mandates only
apply to certain groups or regions, thus providing limited
information only on a subset of individuals compared with the
total population. Similarly, self-tests have become increas-
ingly popular but rely on individuals to perform tests properly
and report positive results to health departments. Hence,
case reports for estimations of COVID-19 progression have
the potential to be biased. As a complement to clinical test-
ing, WS has been used for early detection of community-
wide disease prevalence, including COVID-1950 because the
wastewater microbiome provides useful public health infor-
mation to proactively detect and characterize pathogenic
agents circulating in a community.13 However, it should be
noted that WS requires assessment of chemically and bio-
logically complex samples that have the potential to be
impacted by weather/climatic processes, such as rainfall,
and other inhibitory compounds, such as industrial waste,
that can interfere with accurate measurements. Another
caveat is that there is currently no standardized procedure for
WS sample collection/processing methodologies, which can
introduce detection and/or quantification bias. Hence, in
monitoring a given community, WS is most useful in munici-
palities with sewer collection systems, and the representation
of rural towns may be diminished. Nonetheless, WS has been
shown to be a valuable public health tool to study the emer-
gence and spread of COVID-19 proactively.
Emerging infectious respiratory diseases like COVID-19

cannot be predicted with great accuracy, mainly because
the virus is novel and its pathways of transmission in the
human population remain to be described in detail. There-
fore, we argue that decision-making encompassing a predic-
tion intelligence system should be devised rather than an
approach for an absolute prediction. A complex climate–
sociological hypothesis for the spread of COVID-19 in the
human population was reported in our previous study.17 It
indicated that the virus exhibits seasonality during cold and
warm environments and is a function of seasonal change in
human behavior. On the basis of this hypothesis, a predic-
tion architecture was constructed (pixel and county scale)
and validated for four seasonal periods in the continental

TABLE 3
Pearson correlation coefficient between predicted risk and 1-, 2-,

and 3-week cumulative reported cases for four locations in
Urbana, Illinois

Location

Correlation
coefficient (r)/
P-value (P) 1week 2weeks 3weeks

Location 1 r 0.57 0.41 0.28
P 0.11 0.28 0.47

Location 2 r 0.37 0.56 0.79
P 0.32 0.12 0.01

Location 3 r 0.88 0.73 0.57
P 0.002 0.03 0.11

Location 4 r 0.65 0.73 0.77
P 0.06 0.03 0.02

All locations taken together r 0.54 0.56 0.52
P 0.0006 0.0003 0.0011

Bold indicates P, 0.05.

TABLE 4
Pearson correlation coefficient between predicted risk and 1, 2-,

and 3-week cumulative reported cases for four locations in
Baltimore, MD

Location

Correlation
coefficient (r)/
P-value (P) 1week 2weeks 3weeks

Location A r 0.40 0.63 0.72
P 0.160 0.015 0.003

Location B r 0.68 0.81 0.71
P 0.007 0.001 0.004

Location C r 0.59 0.78 0.75
P 0.025 0.001 0.002

Location D r 0.63 0.78 0.73
P 0.015 0.001 0.003

All r 0.53 0.71 0.70
P 0.00002 7E-10 1.4E-09

Bold indicates P, 0.05.
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United States. A key conclusion is that model validation was
achieved on a seasonal basis, with indication that the disease
may be becoming endemic. The lack of satisfactory statistical
metrics on an annual scale further corroborates the finding that
the virus may now be circulating in the human population. Out-
breaks appear to be a function of cold and warm regions,
depending on time and geographic space. Second, the perfor-
mance of the model was better when computed risk scores
were averaged over the county (Rp) compare to maximum
computed risk score (Rm). However, from the standpoint of
decision-making, both Rp and Rm are likely to lead to different
intervention strategies. For example, selection of at-risk coun-
ties should be made based on Rp; in contrast, Rm will dictate
the location for wastewater sampling (i.e., microbiological iden-
tification for presence of the virus). Third, lead time is calculated
using the model, and was validated using wastewater sam-
pling, hence emphasizing the importance of microbiological
monitoring of sewer systems for public health. A nationwide
wastewater sampling grid or nodes should be established to
monitor the presence and movement of microbial pathogens
within human populations as a significant public health tool.

CONCLUSION

Results of the study reported here are promising: COVID-19
can be managed with systematic information from the model,
combined with microbiological sampling of wastewater. Although
vaccinations lower the chance that individuals suffer serious
disease or hospitalization, the likelihood of infection in the
human population remains a constant threat. Innovative
mitigation and intervention strategies that integrate inter-
disciplinary knowledge (i.e., microbiology, sociology, climate,
earth sciences, and public health, all at the global scale) will
be required for future pandemics.
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